汽油计量器使用说明_汽油计量器使用说明书
1.油箱加多少油合适,什么时候加最好
2.汽油车有计量单元吗
3.计量工安全技术操作规程?
4.油品(汽油、柴油)计量换算准确度问题
5.加气站计量器具有哪些
6.汽车汽油机各传感器的作用?
如果燃油计量单元损坏,会切断喷油器喷油,此时进油计量电磁阀处于完全关闭状态,这样可以防止油轨压力持续升高。
燃油计量单元属于一种非常精密的部件,如果平时使用劣质的汽油滤芯,可能会导致燃油计量单元损坏。汽油滤芯可以过滤汽油中的水分和杂质,如果使用劣质汽油滤芯,会导致汽油中的水分或杂质增多,这样就会导致燃油计量单元损坏。
燃油计量单元安装在高压油泵的进油位置,这个部件可以调整燃油供给量和压力,这个部件受ecu的控制。如果燃油计量单元损坏,仪表盘上会亮故障灯,同时ecu会切断发动机的喷油。如果正在行驶时出现了这个故障,此时需要拖车。
汽车燃油计量单元又称进油计量比例阀,我们可以看做是一个可调大小的水龙头,它安装在高压油泵的进油位置,受到ECU的调节并用于调整燃油供给量和燃油压力值。
在保养车子时,一定要使用正品配件,不要小看一些滤芯的作用。如果使用一些劣质滤芯,可能会导致发动机出现异常。平时加油时,不要加质量非常差的汽油,这样的汽油中杂质和水分比较多。
在平时保养时,可以让技术人员用诊断电脑读取一下故障码,如果车子存在问题可以及时知道。更换汽油滤芯时需要用原厂配件,不要使用假冒伪劣产品。
油箱加多少油合适,什么时候加最好
虽然这是一个重新启动的故障排除的问题,但是它仍然会存在潜在的风险问题,您需要尽快去修理店寻找专业人员进行解决。
一.测量单元测试的方法有以下几种
1. 供电方面的检查:测量油计量单元线束接头引脚2到车厢地面的电压
2. 检查电路是否断开、短路。
3.电阻的检查:测量油计量单元各部件的电阻,正常值:2.6~3.15 ω /引脚1到引脚2。
4、进行ECU检查:测油单元控制信号:拔出测油单元线束连接器,测量ECU引脚A19、A49到车厢地的电压,法量值:10~14V/ECU引脚A19到车厢地,法量值:2.9~4V/ECU引脚A49到车厢地。
二.油计量单元故障症状如下
其中主要症状是车辆仪表盘上的发动机故障指示灯会亮起,然后车辆无法点火。当燃油计量单元损坏时,车辆会自动停止喷油器的工作,从而避免喷油器内部压力过大造成更大的损坏。燃油计量单元一般安装在高压油泵上,主要起到控制燃油喷射量和燃油压力值的作用。
三.汽油表的工作原理
油表的指示几乎是完全依赖于油位传感器的,所以油表指针实际上只是油位传感器的直观表达。
同时油表的主要结构是包括两个主要部分的,即计量单元和显示单元。计量单元主要是用来测量油箱内的油量的,显示单元则是在油表上显示油箱内的油量的。该计量单元主要设计在汽车油箱里面,是由一个浮球与金属棒连接而成的。其基本原理与国内马桶水箱中的浮球原理是相同。
当邮箱油位下降时,浮球的位置也会跟着下降,然后浮球的位置会带动连杆启动注油口,这样就可以加油了。当水位上升时,浮球的位置也会上升,当达到一定的水位时,连杆会关闭注射口。
汽油车有计量单元吗
一般普通油箱标注的并不是油箱最大容积,而是最大合理容积。标注60L的油箱,很可能可以加到70L左右,加60L是比较合理的范围,可以给温度升高引起燃油膨胀提供足够的空间,这样可以保障油箱在使用过程中的安全。
加油量是否标准,不能根据油箱的额定容量来判断,汽车燃油箱是一种容器,不是计量器具,不能作为判断计量准确与否的依据,根据国家有关强制性标准的要求,汽车燃油箱的额定容量应控制在燃油箱最大安全容量的95%。
黄灯亮了加油是正确的,当提示灯亮起,一般还有一定的油量。这时候就需要去加油了,其实很多汽车说明书上都要求在油量剩余1/4时加油。这是出于对油泵的保护,油太少,油无法完全浸泡油泵,散热受影响,而且油箱底的杂质比较多,也很容易造成堵塞,还可能会使汽油泵工作负荷增加,影响油泵内转子的冷却。此外也可能影响排气系统的氧传感器。
所以,最好在有灯亮了前加油,尽量不要等油表灯亮了才想起来去找加油站,油泵、氧传感器这些零件的维修费都挺高,如果附近短距离没有加油站,很可能会抛锚。
计量工安全技术操作规程?
汽油车的计量单位即指:燃油计量单位。
燃油计量单元又称为进油计量比例阀。它安装在高压油泵的进油位置,用于调整燃油供给量和燃油压力值,受ECU控制。
控制过程受轨压传感器测得的数值影响。简单的说可以把计量单元比作一个节流阀,也可以比作一个可调剂大小的水龙头。
油品(汽油、柴油)计量换算准确度问题
1.仪器室禁止非工作人员进入,在入口处应悬挂通知。
2.仪器室钥匙由专人保管,工作开始前打开,工作完毕后锁好。
3.精密计量器具应避免产生碰击、振动、灰尘和温度的剧烈变化,仪器室内不准奔跑、高声呼唤、摔门、开窗、吸烟。
4.计量器具严防锈蚀,不准用于直接接触器具、量块、仪器研磨工作面和光学仪器镜头。应保持室内相对干燥。室内不准进餐。
5.操作仪器前应先检查电气线路是否正常,严禁用导线直接插入柜内。
6.所有计量器具,都应指定专人保管、保养(基准组检块,基准组角度量块应由室负责人保管),每周进行一次检查保养,每月进行一次大清洗。
7.仪器使用完后应解除一切负荷(如紧固机械放松、弹簧松开及被测件松开等)。
8.精密仪器的调整和修理必须由专人负责,其他人员严禁对精密仪器进行拆卸、调整和修理。
9.清洗计量器具应不用易燃材料(如航空汽油,水乙醇等),如必须使用易燃、有害溶剂需特批,选择良好通风条件,保证不发生事故。溶剂应由专人负责和妥善保管,领取不得超过当日用量。
10.工作台及局部照明灯不得超过36V。
11.对危险化学物品的计量工作,应遵守该产品的安全技术操作规程。
12.计量器具应按上级规定定期校验。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:#/?source=bdzd
加气站计量器具有哪些
当温度为20时体积=重量/密度。即V=M/(-0.0011)精确度非常高。当温度不等于20度时需要通过查表来求得20度时的密度,即标准密度ρ20。这时的换算公式为。V=M/(ρ20-0.0011)公式中的0.0011为空气浮力系数
汽车汽油机各传感器的作用?
1、称重秤:称重秤是加油站最基本的计量器具,它可以准确测量汽油、柴油和润滑油的净重或净体积,避免了加油站在出售汽油时发生超量或不足量的情况。
2、流量计:加油站中安装流量计可以检测汽油流量大小。
传感器的种类比较多,像我们一般碰到的传感器一般有:
温度传感器(冷却水温度传感器THW,进气温度传感器THA);
流量传感器(空气流量传感器,燃油流量传感器);
进气压力传感器MAP
节气门位置传感器TPS
发动机转速传感器
车速传感器SPD
曲轴位置传感器(点火正时传感器)
氧传感器
爆震传感器(KNK)
二、空气流量传感器
为了形成符合要求的混合气,使空燃比达到最佳值,我们就必须对发动机进气空气流量进行精确控制。下面我们来介绍一下几种常用的空气流量传感器。
1、 卡门旋涡式空气流量计
涡流式空气流量传感器是利用超声波或光电信号,通过检测旋涡频率来测量空气流量的一种传感器。
众所周知,当野外架空的电线被风吹时,就会发出“嗡、嗡”的声音,且风速越高声音频率越高,这是气体流过电线后形成旋涡(即涡流)所致。液体、气体等流体均会产生这种现象。
同样,如果我们在进气道中放置一个涡流发生器,比如说一个柱状物,在空气流过时,在涡流发生器后部将会不断产生如图所示的两列旋转方向相反,并交替出现的旋涡。这个旋涡就称为卡门旋涡。
卡门旋涡式空气流量计就是利用这种这种旋涡形成的原理,测量气体流速,并通过流速的测量直接反映空气流量。
对于一台具体的卡门旋涡式空气流量计,有如下关系式:qv=kf , qv为体积流量,f为单列旋涡产生的频率,k为比例常数,它与管道直径,柱状物直径等有关。由这个关系式可知,体积流量与卡门涡流传感器的输出频率成正比。利用这个原理,我们只要检测卡门旋涡的频率f,就可以求出空气流量。
根据旋涡频率的检测方式的不同,汽车用涡流式空气流量传感器分为超声波检测式和光学式检测式两种。例如,中国大陆进口的丰田凌志LS400型轿车和台湾进口的皇冠3.0型轿车采用了 光电检测涡流式空气流量器;日本三菱吉普车、中国长风猎豹吉普车和韩国现代轿车采用了超声波检测涡流式空气流量传感器。
(1)光学式卡门旋涡空气流量计
现代物理学光的粒子说认为,光是一种具有能量的粒子流,当物体受到光照射时,由于吸收了光子能量而产生的效应,称为光电效应。光敏晶体管是一种半
导体器件,它的特点就是受到光的照射时,它们都会产生内光电效应的光生伏特现象,从而产生电流。
工作原理:在产生卡门旋涡的过程中,旋涡发生器两侧的空气压力会发生变化,通过导孔作用在金属箔上,从而使其振动,发光二极管的光照在振动的金属箔上时,光敏晶体管接收到的金属箔上的反射光是被旋涡调制的光,再由光敏晶体管输出调制过的频率信号,这种频率信号就代表了空气的流量信号。
(2)超声波式卡门旋涡式空气流量计
超声波是指频率高于20HZ,人耳听不到的机械波。它的特性就是方向性好,穿透力强,遇到杂质或物体分界面会产生显著的反射,譬如自然界里的蝙蝠,鲸鱼等动物都是通过超声波来进行方位定向的。利用这种物理特性,我们可以把一些非电量转换成声学参数,通 过压电元件转换成电量。
超声波式卡门旋涡式空气流量计的工作原理与光学式卡门旋涡空气流量计的工作原理大致相同,只是光学元件换成了声学元件。
在日常生活中,常常会遇到这样的现象,即当顺着风向喊话人时,对方很容易听到;而逆着风向喊人时,对方就不容易听到。这是因为前者的空气流动方向与声波的前进方向相同,声波被加速的结果,而后者是声波受阻而减速的结果。在超声波式流量传感器中,同样存在着这种现象。
工作原理是:在旋涡发生器下游管路两侧相对安装超声波发射探头和超声波接收探头,超声波发射探头不断向超声波接收探头发出一定频率(一般为40KHZ)的超声波,当超声波通过进气气流到达超声波接收器时,由于受到气流移动速度及压力变化的影响,因此接收到的超声波信号的相位(时间间隔)以及相位差(时间间隔之差)就会发生变化,集成控制电路根据相位或相位差的变化情况计量出涡流的频率。涡流频率信号输入ECU后,ECU就可以计算出进气量。
2、 热线式空气流量计
构成:我们来看书上的结构图,它的基本构成包括感知空气流量的白金热线、根据进气温度进行修正的温度补偿电阻(冷线)、控制热线电流的控制电路以及壳体等。根据白金热线在壳体内安装部位的不同,可分为安装在空气主通道内的主流测量方式和安装在空气旁通道内的旁通道测量方式。
热线式空气流量计是利用空气流过热金属线时的冷却效应工作的。将一根铂丝热线置于进气空气流中,当恒定电流通过铂丝使其加热后,如果流过铂丝周围的空气增加,金属丝温度就会降低。如果要使铂丝的温度保持恒定,就应根据空气量调节热线的电流,空气流量越大,需要的电流越大。下面的图是主流测量方式的热线式空气流量计的工作原理图。其中RH为是直径为0.03-0.05的细铂丝(热线),RK是作为温度补偿的冷线电阻。RA和RA是精密线桥电阻。四个电阻共同组成一个惠斯登电桥。在实际工作中,代表空气流量的加热电流是通过电桥中的RA转换成电压输出的。当空气以恒定流量流过时,电源电压使热线保持在一定温度,此时电桥保持平衡。当有空气流动时,由于RH的热量被空气吸收而变冷,其电阻值发生变化,电桥失去平衡。此时,放大器即增加通过铂丝的电流,直到恢复原来的温度和电阻值,使电桥重新平衡。由于电量的增加,RA的电压增加,这样就在RA上得到了代表空气流量的新的电压输出。
进气温度的任何变化都会使电桥失去平衡。为此,在靠近热线的空气流中,设有一个补偿电阻丝(冷线)。冷线补偿电阻的温度起一个参照值的作用。在工作中,放大器会使热线温度高出进气温度100度。热线式空气流量计长期使用,会使热线上积累杂质。为此,在热线式流量计上采用了烧尽措施解决这个难题。每当发动机熄火时,ECU自动接通空气流量计壳体内的电子电路,热线被自动加热,使其温度在1S内升高了1000度。由于烧尽温度必须是非常精确的,因此,在发动机熄火后4S后,该电路才被接通。
这种空气流量计由于没有运动部件,因此工作可靠,而且响应特性较好;缺点是在空气流速分布不均匀时误差较大。
3、 热膜式空气流量计
热线式空气流量计虽然可以提供精确的进气空气流量,但造价太高,主要用于高级轿车,为了满足精度高,结构简单,造价又便宜的要求,德国博世公司厚膜工艺,开发出了热膜式空气流量计。热膜式空气流量计的工作原理与热线式空气流量计类似,都是用惠斯登电桥工作的。所不同的是热膜式空气流量计不用铂金作为热线,而是将热线电阻、补偿电阻和线桥电阻用厚膜工艺集中在一块陶瓷片上。这种空气流量计已大量使用于各种电控汽油喷射系统中。
三、压力传感器
功用:把压力信号转变为电压信号。
应用范围:它在汽车上主要有两个方面的应用。一是用于气压的检测,包括进气真空度、大气压力、气缸内的气压及轮胎气压等;二是用于用于油压的检测,包括变速箱油压、制动阀油压及悬挂油压等。
1、电容式压力传感器
首先我们来了解一下电容器。电容器的容量与组成的电容的两极板间的电介质及其相对有效面积成正比,而与两极板间的距离成反比,即C=ε A/d,其中ε为电介质的介电常数,A为两金属电极板间相对有效面积,d为两金属电极板间距离。由这个关系式可以看出,当其中两个参数不变,而另一个参数作为变量时,电容量就会随着变化的参数而变化。电容压力传感器由置于空腔内的两个动片(弹性金属膜片)、两个定片(弹性膜片上下凹玻璃上的金属涂层)、输出端子和壳体等组成。其动片与两个定片之间形成了两个串联的电容。当进气压力作用于弹性膜片时,弹性膜片产生位移,势必与一个定片距离减小,而与另一个定片距离加大(可以通过一张纸来示范)。我们可以从公式中看出,两金属电极板间距离是影响电容量的重要因素之一,距离增大,则电容量减少,距离减少,则电容量增大。这种由一个被测量量引起两个传感元件参数等量、相反变化的结构,称为差动结构。如果弹性膜片置于被侧压力与大气压之间(弹性膜片上部空腔通大气),测得的是表压力;如果弹性膜片置于被侧压力与真空之间(弹性膜片上部空腔通真空),测得的是绝对压力。
与电容式传感器配合使用的测量电路有很多种,下面我们来以电桥电路为例说明电容差动式传感器测量电路的工作原理,如图,由于电容是交流参数,所以电桥通过变压器用交流激励。变压器的两个线圈与两个电容组成电桥,当无进气压力时,电桥处于平衡状态,两电容值相等并且为C0,当有压力作用时,其中一个电容值为C0+△C,另一个电容值为C0-△C,(△C为外部压力作用时引起的电容值的变化量),则电桥失去平衡,电容值高的地方电压也高,两个电容之间产生了电压差,由此电桥产生代表进气压力的电压输出U。
2、 差动变压器进气压力传感器
差动压力传感器是一种开磁互感式电感传感器。由于具有两个接成差动结构的二次线圈,所以又称为差动变速器。
当差动变压器的一次线圈由交变电源激励时,其二次线圈就会产生感应电动势。由于二次线圈作差动连接,所以总的输出是两线圈感应电动势之差。当铁心不动时,其总输出量为零;当铁心移动时,输出电动势与铁心位移呈线性变化。
差动变压器进气压力传感器的检测与转换过程是:先将压力的变化转换成变压器铁心的位移,然后通过差动变速器再将铁心位移转换为电信号输出。这种压力传感器主要有真空膜盒(波纹管)、差动变速器等组成。当气压变化时,波纹管变形,带动差速变压器的铁心移动,由于铁心的位移,差动变压器的输出端即有电压产生,将此电压经过处理后送至ECU输入端。如果按照电压的高低来确定喷射时间并使喷油器工作的话,就可以确定基本喷油量。
3、 半导体应变式进气压力传感器
半导体压力进气传感器是利用应变效应工作的。
所谓应变效应,就是指当导体、半导体在外力作用下产生应变时,其电阻值发生变化的现象。
电阻应变片是一种片状电阻传感器,它是利用半导体材料当在其轴向施加一定载荷产生应力时,它的电阻率会发生变化的所谓压阻效应原理工作的。
由电阻应变片构成的进气压力传感器主要由半导体应变片、真空室、混合集成电路板等组成。半导体应变片是在一个膜片上用半导体工艺制做的四个等值电阻,并且连接成电桥电阻。半导体电阻电桥应变片放置在一个真空室内,在进气压力的作用下,应变片产生变形,电阻值发生变化,电桥失去平衡,从而将进气压力的变化转换成电阻电桥输出电压的变化。
四、气门位置传感器
节气门位置传感器安装在节气门体上,它将节气门开度转换成电压信号输出,以便计算机控制喷油量。
节气门位置传感器有开关量输出和线性输出两种类型。
(1)、开关式节气门位置传感器
这种节气门位置传感器实质上是一种转换开关,又称为节气门开关。这种节气门位置传感器包括动触点、怠速触点、满负荷触点。利用怠速触点和满负荷触点可以检测发动机的怠速状态及重负荷状态。一般将动触点称为TL触点,怠速触点称为IDL触点,满负荷触点称为PSW触点。从结构图可以看出,在与节气门联动的连杆的作用下,凸轮可以旋转,动触点可以沿凸轮的槽运动。这种节气门位置传感器结构比较简单,但其输出是非连续的。
在节气门全关闭时,电压从TL端子加到IDL端子上,再回到电子控制器上。通过这样的途径传递信号时,电子控制器明白节气门现在是全关闭状态。当踏下加速踏板,节气门处于某一开度以上时,电压从TL端子经过PSW端子再传递给电子控制器。电子控制器明白了,现在节气门打开了一定的角度。
下面我将怠速信号与负荷信号对喷油量的影响加以说明。当有IDL信号输出并且发动机转速超过规定转速时,则中断供油,以防止催化剂过热及节省燃油。当IDL信号从有输出转换到无输出时,电子控制器判断出节气门从全关闭状态换至打开状态,当然也就判断出车辆处于起步或再加速状态,所以就会根据发动机的暖机状态进行加速加浓,增大喷油量,以供给加速所需要的较浓混合气。
当有PSW信号输入到电子控制器中时,则发挥输出加浓功能,增大喷油量。在重负荷行车时,若没有PSW信号输出的话,就会没有输出加浓作用,发动机输出的力量就要稍微低一些。
(2)线性节气门位置传感器
线性节气门位置传感器装在节气门上,它可以连续检测节气门的开度。它主要由与节气门联动的电位器、怠速触点等组成。电位计的动触点(即节气门开度输出触点)随节气门开度在电阻膜上滑动,从而在该触点上(TTA 端子)得到与节气门开度成正比例的线性电压输出。如图。当节气门全闭时,另外一个与节气门联动的动触点与IDL触点接通,传感器输出怠速信号。节气门位置输出的线性电压信号经过A/D转换后输送给计算机。
五、氧传感器
在使用三元催化进化装置的汽油喷射发动机中,一般都在排气管中安排氧传感器,用以检测排气中氧的含量,从而间接地判断进入气缸内混合气的浓度,以便对实际空燃比进行闭环控制。当排气中氧的含量过高时,说明混合气过稀,氧传感器即输出一个电信号给ECU,让其指令喷油器增加喷油量;当排气中氧的含量过低时,说明混合气过浓,氧传感器立刻将此信息传递给ECU,让其指令喷油器减少喷油量。目前在汽车上使用的氧传感器主要有二氧化钛氧传感器和二氧化锆氧传感器两种类型的传感器。
工作原理:氧传感器装在发动机的排气管里,用来测量排气中氧的含量。它是按照大气与排气中氧浓度之差而产生电动势的一种电池。如图,在陶瓷电解质的内、外两面分别涂有白金以形成电极。当它插入排气管中时,其外表面接触废气,内表面则通大气。在约300度以上的温度时,陶瓷电解质可变为氧离子的传导体。当混合气较稀,也就是过量空气系数α〉1时,排气中含氧必然多,陶瓷电解质的内外表面的氧浓度差小,只产生小的电压;而当混合气较浓,也就是过量空气系数α〈1时,排气中氧含量较少,同时伴有大量的未完全燃烧物如CO、碳氢化合物等,这些成分都可能在催化剂的作用下与氧发生反应,消耗排气中残余的氧,使陶瓷电解质外表面的氧浓度趋向于零,这样就使得电解质内外的氧浓度差突然增大,传感器输出电压也突然增大了,其数值趋向于1V。
六、温度传感器
作用:用来测量冷却水温度、进气温度和排气温度。
种类:温度传感器的种类很多,如热敏电阻式、半导体式和热电偶式等。
所谓热敏电阻,是指这种电阻对温度敏感,当作用在这种电阻上的温度变化时,其阻值会随温度的变化而变化。其中,随温度升高的叫做正温度型热敏电阻,相反随温度升高阻值减少的,叫做负温度系数型热敏电阻。
热敏电阻温度传感器的测量电路比较简单,只要把传感器与一个精密电阻串联接到一个稳定的电源上,就能够用串联电阻的分压输出反映温度的变化。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。